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Abstract

Estimating an individual’s age can be relevant in several areas primarily related to the clinical and forensic fields. In the latter, estimation of
an individual’s chronological age from biological material left by the perpetrator at a crime scene may provide helpful information for police
investigation. Estimation of age is also beneficial in immigration cases, where age can affect the person’s protection status under the law, or
in disaster victim identification to narrow the list of potential missing persons. In the last decade, research has focused on establishing new
approaches for age prediction in the forensic field. From the first forensic age estimations based on morphological inspections of macroscopic
changes in bone and teeth, the focus has shifted to molecular methods for age estimation. These methods allow the use of samples from
human biological material that does not contain morphological age features and can, in theory, be investigated in traces containing only small
amounts of biological material. Molecular methods involving DNA analyses are the primary choice and estimation of DNA methylation levels at
specific sites in the genome is the most promising tool. This review aims to provide an overview of the status of forensic age prediction using
molecular methods, with particular focus in DNA methylation. The frequent challenges that impact forensic age prediction model development
will be addressed, together with the importance of validation efforts within the forensic community.
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Introduction

Ageing is characterized by a progressive decline of biological
function resulting in deterioration, frailty, and, eventually,
death [1, 2]. Nine major cellular and molecular hallmarks
have been proposed to contribute to the process of ageing each
of which explains one or more aspects of the biological basis
of ageing. These were extensively reviewed in López-Otín
et al. [2]. They include genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, deregulated nutri-
ent sensing, mitochondrial dysfunction, cellular senescence,
stem cell exhaustion, and altered intercellular communication.
These factors are interconnected, and their relationship is
intricate [3].

An individual’s age is usually assessed by chronological age,
defined as the period elapsed since birth to a specific point
[4]. But age also reflects the biological changes that occurred
within that period. Although chronological age can be used
as a proxy for biological age, the rate at which age-dependent
biological changes occur differs among individuals. Hence,
biological age describes the general condition of an individual
at a particular chronological age and may thus differ from
the chronological age [4]. As such, it has been shown that

higher biological age is associated with age-dependent diseases
such as atrial fibrillation [5]. While the definition of chrono-
logical age is somewhat trivial, the biological age is harder
to define, and sometimes, chronological and biological ages
are used interchangeably in the literature. Estimating age can
be relevant in several areas primarily related to the clinical
and forensic fields. As this review focuses on forensic age
estimation, the term “age” refers to chronological age rather
than biological age hereafter.

Forensic genetic casework is related to three main areas:
analysis of trace samples, individual identification, and rela-
tionship testing (paternity cases or other kinship cases). The
biological material left by the perpetrator at a crime scene,
e.g. bloodstains, semen, or hair, can be used for identification.
The DNA profile obtained from the trace sample is compared
to the DNA profile of a suspect or profiles in the national
DNA database. However, in situations with no suspect and
no DNA match in the crime DNA database, additional intel-
ligence information such as biogeographical ancestry [6, 7]
and externally visible characteristics (EVCs) (hair, eye, and
skin colour) [7] inferred from the DNA can provide further
investigative leads. In this context, age estimation can be
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particularly relevant to direct the police investigation and even
provide information on age-related phenotypic traits such as
hair colour and baldness.

Estimation of age is also beneficial in other forensic con-
texts. In immigration cases, when the age of young asylum
seekers cannot be proven by valid identification documents,
age assessment is usually performed. In these cases, the esti-
mated age might influence the outcome of the asylum process
since an individual’s age affects the person’s protection status
under the law [8]. In disaster victim identification (DVI),
estimation of age from biological material can also serve
as a screening tool to narrow the list of potential missing
persons. Age estimation is also an important aspect of forensic
anthropology, where age-at-death often serves as a key fea-
ture in identifying skeletal remains and excluding particular
missing persons [9]. Another potential application of age esti-
mation is investigative genetic genealogy. Genetic information
from direct-to-consumer companies performing genealogical
investigations can be used to search for distant relatives
of potential perpetrators through DNA profiles generated
from samples recovered in criminal investigations. Knowing
an individual’s age can help determine what generation to
investigate when searching for the perpetrator among distant
relatives.

Age estimation methods in forensic casework

The first forensic age estimations were based on morpholog-
ical inspections of macroscopic changes in bone and teeth
[10]. Morphological methods for age estimation are still in
use today, and different approaches are used based on the
biological material available. These relate to post-adolescent
bone and dental maturation and/or degeneration [11–13].
One of the major drawbacks of these traditional macro-
scopic forensic age estimation methods is the scope of their
applicability. These methods require biological material with
morphological age features, which limits the tissues suitable
for investigation in the context of a crime scene. Moreover,
damaging X-radiation might raise ethical issues when applied
to young asylum seekers.

In this regard, several methods of molecular age estimation
have been proposed based on the molecular and biochemical
changes that occur within the cell during ageing. These
methods may be applied to samples from human biological
material that do not contain morphological age features
and can, in theory, be used on crime scene traces contain-
ing only small amounts of biological material. Although
specific proteins and RNA-based methods have been described
[14–16], molecular methods involving DNA analyses are the
most promising ones. DNA is a relatively stable molecule even
in biological samples such as dried bloodstains, which makes
DNA a suitable molecule for forensic age estimation [17].
Four groups of molecular biomarkers have been proposed for
age estimation: mitochondrial DNA alterations, shortening
of telomeres, signal-joint T-cell receptor excision circles, and
DNA methylation. From these methods, changes in the pattern
of DNA methylation have shown the greatest potential for
estimating age in a forensic context [18].

DNA methylation

DNA methylation is one of the best-understood epigenetic
modifications in the genome [19, 20]. The most common form
of DNA methylation is a methyl group on the fifth carbon

of cytosine (5meC). This epigenetic modification predomi-
nantly occurs at cytosines (C) that are followed by guanines
(G). This is referred to as CpG loci, where the p stands
for the phosphodiester bond between the two nucleotides
[21]. Approximately, 70% of the CpG dinucleotides in the
human genome are methylated [22]. CpG sites are unevenly
distributed throughout the genome, with most of the genome
being CpG-poor. CpG sites occur in higher density in specific
genomic regions called CpG islands, often located within or
near promoter regions of genes [23]. Here, the methylation
status of the CpGs influences gene expression: unmethylated
sites are typically associated with active gene expression, while
methylation of CpGs often leads to decreased transcription
[20].

DNA methylation is dynamic, and DNA methylation levels
change throughout life. CpG sites that become hypermethy-
lated with age tend to be located within CpG islands, and as
the CpG islands are often located within promoter regions,
transcription of many genes is reduced with increased age
[24]. In contrast, non-island CpGs loose methylation with age
[24]. Most CpGs are located outside CpG islands, leading
to an overall decrease in methylation levels with age. Early
studies hypothesized that the gradual loss of methylation
over time was due to the accumulation of errors during cell
replication, where the DNA methylation was not preserved
[25]. However, these errors are unsystematic, which means
that the CpG sites that undergo stochastic changes over time
might not be the same in every individual. Consequently,
an increase in interindividual variability is observed with
age [26]. This phenomenon is known as epigenetic drift.
Today, epigenetic drift covers both the stochastic drift in
DNA methylation and differences induced by the environment
(e.g. differences in smoking habits, alcohol consumption, and
diet) [27–29].

Even though epigenetic drift is a known and somewhat
unpredictable phenomenon, specific CpGs have been iden-
tified, where the changes in DNA methylation levels with
age are consistent across individuals. The DNA methylation
of these CpGs has been used to construct models for pre-
dicting the chronological age [28, 30–32]. This phenomenon
is known as the epigenetic clock. Epigenetic clock CpGs
are mostly found within CpG islands, whereas non-island
CpGs tend to be more affected by epigenetic drift. Conse-
quently, age-associated CpGs predominantly gain methylation
with age (called hypermethylation) although age-associated
decreases in methylation (called hypomethylation) have also
been observed [33, 34].

Many of the early studies on age-correlated DNA methyla-
tion were based on genome-wide examinations. Most often,
these investigations were used to screen and select relevant
age-correlated CpG sites, and thus, the majority of the most
promising CpG sites for age determination were discovered
through these investigations [33, 35, 36]. The most common
approaches are whole-genome bisulphite sequencing (WGBS),
reduced-representation bisulphite sequencing (RRBS), and
microarray-based methods (for a detailed review of the
methods, see Yong et al. [37]).

To this day, more than 100 CpGs in more than 50 genomic
regions have been identified and applied for age-prediction in
a forensic context. Table 1 presents a summary of 12 genes
with age-associated CpGs included in forensic age-prediction
models, the tissues examined, the ageing patterns of the CpGs,
and the references from the literature.
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Table 1. Age-associated candidate loci, CpGs described, tissues investigated, aging pattern, and references from the literature.

Genea CpGsb Tissue Ageing pattern Reference

ASPA cg02228185 Blood, buccal swabs, bones Hypomethylation [32, 40–42, 50, 64, 74, 76, 93]
MIR29B2CHG chr1:207823672, cg10501210,

chr1:207823681, chr1:207823702,
chr1:207823705, chr1:207823715,
chr1:207823723

Blood, saliva, buccal swabs,
hair follicles

Hypomethylation [47, 52, 56, 61, 63, 64, 68, 69,
71, 73, 76, 85, 90, 94–96]

CCDC102B chr18:68722210, cg19283806 Blood Hypomethylation [49, 61, 63, 64, 73, 93–95]
EDARADD chr1:236394441, cg09809672,

chr1:236394371, chr1:236557695
Blood, saliva, buccal swabs,
dental tissue

Hypomethylation [40, 41, 57, 73, 76, 89, 90, 93]

ELOVL2 chr6:11044585, chr6:11044587,
chr6:11044590, chr6:11044625,
chr6:11044628, chr6:11044631,
chr6:11044634, chr6:11044640,
chr6:11044642, cg16867657,
chr6:11044647, cg24724428,
cg21572722

Blood, saliva, buccal swabs,
dental tissue, hair follicles,
bones

Hypermethylation [18, 40, 41, 47–49, 52, 54, 56,
58, 59, 61, 63, 64, 68, 69, 71,
73, 74, 76, 78, 89, 90, 94–97]

FHL2 cg06639320, chr2:105399288,
chr2:105399291, chr2:105399300,
chr2:105399316

Blood, saliva, buccal swabs Hypermethylation [47, 52, 56, 64, 68, 71, 73, 76,
89, 90, 93–95]

ITGA2B chr17:44390358, cg25809905,
chr17:44390374, chr17:44390412

Blood, buccal swabs Hypomethylation [32, 42, 50, 66, 74, 93]

KLF14 chr7:130733453, cg14361627,
chr7:130734357, chr7:130734372,
chr7:130734375, chr7:130733483,
cg04528819

Blood, saliva, buccal swabs,
hair follicles, bones

Hypermethylation [47, 51, 52, 54, 56, 57, 59,
69–71, 76, 78, 80, 87, 93, 95]

NOX4 cg06979108 Semen Hypermethylation [53, 55, 72, 75]
PDE4C chr19:18233078, cg17861230,

chr19:18233105, chr19:18233127,
cg01481989, chr19:18233133,
chr19:18233193

Blood, buccal, dental tissue,
hair follicles, bones

Hypermethylation [40, 41, 50, 57, 61, 64, 66, 69,
74, 76, 89, 90]

TRIM59 chr3:160450174, cg07553761,
chr3:160450192, chr3:160450199,
cg15618978

Blood, saliva, buccal swabs Hypermethylation [47, 52, 54, 56, 59, 61, 68, 71,
73, 76, 78, 95]

aThe loci included in the table have shown correlations between DNA methylation levels and chronological age and have been incorporated into prediction
models in at least four published studies. bCRCh38 positions are shown for CpGs without cg number.

Analysis of DNA methylation—forensically relevant

methods

Most methods used for detection of DNA methylation require
bisulphite conversion and PCR amplification of the DNA.
Sodium bisulphite deaminates unmethylated cytosines (C)
and converts them into uracils (U), whereas methylated
cytosines are protected from deamination and remain
unaltered (Figure 1). PCR amplification of the bisulphite
treated DNA using dNTPs (dATP, dCTP, dGTP, and dTTP)
changes uracils to thymines (T). Thus, the methylation status
can be determined by the proportion of PCR molecules
with C or T in a specific CpG position, which resembles
genotyping of single nucleotide polymorphisms (SNPs). One
of the drawbacks of bisulphite treatment is the considerable
loss and fragmentation of the DNA, which reduces the number
of molecules that can serve as a template for the downstream
PCR analysis [38]. Consequently, high amounts of input DNA
(∼200–500 ng) are recommended for the bisulphite treatment,
which is rarely compatible with the amount recovered from
crime scenes [39].

DNA is treated with sodium bisulphite. Unmethylated
cytosines are converted to uracils, whereas methylated
cytosines stay unaltered. During subsequent PCR ampli-
fication the uracils are converted to thymines, thus, the
methylation status of the original DNA molecule can be
interpreted as a cytosine or thymine after the PCR.

Figure 1. Bisulphite conversion of methylated and unmethylated citosines.

Current forensic methods for determining DNA methy-
lation rely on high-sensitivity/high-throughput techniques,
although there is no standard technology adopted. Several
technologies used for standard SNP genotyping have been
applied to studies of DNA methylation, including pyrose-
quencing, single base extension (SBE), mass spectrometry,
and massively parallel sequencing (MPS) (see Table 2 and
Figure 2).
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Table 2. Technologies for determination of DNA methylation in forensic genetics and their main characteristics in regard to DNA methylation analysis.

Technique Detection platform Length of analyzed
region (bp)

Target detection by platform Methylation status

Pyrosequencing PyroMark <100 One target region per analysis All CpGs in the target region
Base-specific

cleavage of ssRNAsa
MALDI-TOF mass
spectrometer

100–600 One target region per analysis All CpGs in the target region

SBE Capillary
electrophoresis

1 Multiplexing of target regions
is possible

One CpG per SBE primer

MPS MPS platform <300 High level of multiplexing of
target regions is possible

All CpGs in target region

SBE: single base extension; MPS: massively parallel sequencing; MALDI-TOF: matrix-assisted laser desorption-ionization time of flight. aEpiTYPER®

MassARRAY® system.

Figure 2. Technologies for determination of DNA methylation in forensic genetics.

The input for all methods is PCR products from amplifica-
tion of bisulphite-treated DNA, as seen in Figure 2. (i) Pyrose-
quencing: each of the four nucleotides are added sequentially
to the sequencing reaction. As a nucleotide is incorporated
into the strand, pyrophosphate is released and used by an
enzymatic cascade leading to the generation of light. The burst
of light is detected by a camera. The level of methylation of
a given CpG can be interpreted as the ratio of incorporated
C or Ts at the CpG locus and would be approximately 33%
with the given pyrogram. (ii) EpiTYPER® MassARRAY®

system: after PCR amplification, in vitro transcription of the
PCR products is carried out. Methylated cytosines are tran-
scribed to guanine, while unmethylated cytosines, converted
to uracils after bisulphite conversion and turned into thymine
after PCR amplification, are transcribed to adenines. Tran-
scription is followed by uracil-specific-cleavage of the RNA
and the RNA fragments are analyzed by MALDI-TOF MS.
Adenines are 16 Da lighter than guanines resulting is two
peaks in the mass spectrum. The level of methylation of a
given CpG is determined by the peak heights of the two
RNA fragments in the mass spectrum. In the given mass
spectrum, the fragment “CAU” would have the same mass
as the unmethylated fragment “ACU” of the given CpG thus,
the level of methylation for the CpG would be approximately
66% as “CAU” takes up two-thirds of the peak height of
the black peak. (iii) SBE: an SBE primer, complimentary to
the region adjacent to the CpG of interest, anneals to the

single stranded PCR product. The primer is extended by one
fluorescently labelled dideoxy nucleotide complimentary to
the nucleotide present at the interrogated position. The iden-
tity of the incorporated nucleotide can be interpreted from the
colour of the fluorescence detected by capillary electrophore-
sis. Here, the level of methylation is given by the peak height
ratio between the methylated and the unmethylated allele and
would be approximately 60% for the given GpG. (iv) Illumina
sequencing-by-synthesis: DNA synthesis is performed in the
presence of all four nucleotides with different fluorescently
labelled reversible terminators (marked by an asterisk). Once
the nucleotide is incorporated, the fluorescence is detected
by a camera. The terminator is chemically removed allowing
incorporation of the next nucleotide into the growing strand.
The level of methylation of a given CpG can be interpreted as
the number of reads containing a cytosine versus a thymine at
the CpG position. ddNTP = dideoxynucleotide triphosphates,
dNTP = deoxynucleotide triphosphate, ppi = pyrophosphate.

Early models proposed for forensic prediction of age relied
on pyrosequencing and the PyroMark platform [32, 40–42].
Pyrosequencing is a sequencing-by-synthesis method based on
the release of pyrophosphate and light detection, whenever
a nucleotide is incorporated onto the growing DNA strand
[43]. The level of methylation of a CpG can be interpreted
as the ratio of incorporated C or Ts at the CpG locus and
reported as percentage of methylation [44]. The usual read
length is less than 40 nucleotides; however, read lengths of up
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to 100 bp can be achieved [45]. Thus, only closely positioned
CpG sites may be analyzed on the same fragment. One of the
significant disadvantages of pyrosequencing is the low multi-
plexing capacity of the PyroMark, where only one amplicon
can be sequenced at a time. This increases the amount of DNA
input needed to analyze CpG sites from several regions of
interest, as a reaction would need to be carried out for each
region of interest. However, multiplex amplification strategies
for DNA methylation analysis through pyrosequencing are
emerging [46]. Despite this limitation, pyrosequencing is still
the most used technique for quantifying DNA methylation
[47–59].

The EpiTYPER® MassARRAY® system is a MALDI-TOF
mass spectrometry-based detection method that relies on the
mass difference between transcribed RNA fragments [60].
Several age-prediction models have been developed based on
this system [18, 61–66]. After bisulphite treatment and PCR
amplification with tagged PCR primers, the PCR products are
transcribed in the reverse direction, and the RNA is cleaved
after every uracil residue in the RNA. The RNA fragments are
analyzed by MALDI-TOF mass spectrometry, and the mass
of each RNA fragment is measured. On the reverse strand,
cytosines converted to uracils by the bisulphite treatment are
adenines, whereas methylated cytosines are guanines. The
sequence change from guanine to adenine results in a mass
shift of 16 Da [60]. The level of methylation of a given CpG
locus is determined by the peak heights of the two RNA
fragments in the mass spectrum. Closely positioned CpGs may
be present on the same RNA fragment, and the methylation
levels of these can only be determined indirectly. Furthermore,
only one transcribed molecule can be investigated in each
reaction.

Other techniques with higher multiplexing capability have
also been proposed for detection of DNA methylation in
forensic genetics. SBE is a well-known method for SNP typing
that has been used for standard forensic casework [67], which
makes the implementation of the method for age determi-
nation straightforward. DNA methylation can be detected
using the same method, and several studies have used this
technology for age-prediction [68–72]. After bisulphite treat-
ment and PCR amplification, the SBE reaction is performed
as consecutive cycles of denaturation of the double-stranded
DNA, annealing of the SBE primers to the PCR products,
and single base extension. The SBE primer anneals to the
single-stranded PCR product immediately upstream of the
CpG position. The DNA polymerase adds a fluorescently
labelled dideoxyribonucleotide (ddNTP), complementary to
the nucleotide in the CpG position, to the SBE primer. The SBE
product is then analyzed by capillary electrophoresis, where
the identity of the incorporated nucleotide can be interpreted
from the colour of the fluorescence. Here, the level of methy-
lation of a CpG is given by the peak height ratio between
the methylated and the unmethylated allele. The downside
of the method is that only CpGs for which SBE primers
were designed can be investigated. Therefore, the methylation
status of neighbouring CpGs remains unknown unless SBE
primers for these loci are also designed and included in the
multiplex SBE reaction.

In the last couple of years, MPS has gained interest in
forensic age determination, and most of the recent predic-
tion models employ PCR-MPS methods [73–76]. MPS covers
multiple platforms for high-throughput sequencing that use
a variety of different sequencing chemistries (reviewed in

Moorthie et al. 2011 [77]). For MPS of bisulphite-converted
DNA, the MiSeq system has been the platform of choice
[73–76, 78]. MiSeq uses sequencing-by-synthesis chemistry,
where all four nucleotides with different fluorescently labelled
reversible terminators are added to the reaction. The incor-
porated nucleotide is detected via the fluorescent label, and
DNA synthesis is resumed once the terminator is chemically
removed [79]. The level of methylation of each position is
given by the proportion of reads with C or T alleles. MPS can
determine the methylation status of neighbouring CpG loci
on the same amplicon. Furthermore, with the incorporation
of molecular barcodes, several individuals can be sequenced
simultaneously, which decreases the cost per experiment. Nev-
ertheless, the price might be prohibitive for implementing the
method in forensic laboratories. Urgent criminal casework
could become expensive, because it may not always be pos-
sible to maximize the sequencing run by investigating many
samples in one run.

Due to the quantitative nature of DNA methylation assess-
ment, the methylation levels found in a CpG site might not be
identical or similar to those detected using other techniques or
platforms [61, 80]. Therefore, the models are often platform-
specific, and the pros and cons of using each platform should
be weighted. Attempts have been made to apply models from
one platform to data generated with another; however, usually
large differences in the DNA methylation are observed result-
ing in large prediction errors. To some extent, these errors can
be reduced by applying data correction [61, 80, 81].

Developing an age-prediction model for
forensic casework—challenges and status

The first forensically relevant age-prediction model based on
DNA methylation was proposed by Weidner et al. in 2014
[32]. The number of reported models has continued to grow
since then, and to this day, there are more than 40 studies
on DNA methylation-based age estimation in a forensic con-
text, most of which were published from 2017 to 2022. An
overview of the published studies, including a summary of
the main characteristics—technology used, cohort and tissue
types investigated, CpGs covered, and prediction accuracy
of the models is presented in Supplementary Table S1 (last
revised December 2022).

The rationale behind model development is to use the
methylation levels of age-informative CpGs and the corre-
sponding chronological age of the studied individuals to build
a model for predicting the age of an individual with unknown
age. The performance of a model is evaluated by the difference
between the predicted and chronological age of the tested
individuals. The performance is often presented as the mean
absolute deviation (MAD) or mean absolute error (MAE),
used interchangeably, although several other metrics have
been described. Throughout this review, the MAD will be used
whether or not MAD or MAE were used in the original paper.

In the following sections, we will describe the most impor-
tant factors influencing the detection and distribution of DNA
methylation in the human genome, their consequences, and
the status of DNA methylation age-prediction models.

DNA requirements

DNA methylation analysis requires higher amounts of DNA
than what is typically available in forensic trace samples.
This requirement is mainly due to bisulphite treatment greatly

https://academic.oup.com/fsr/article-lookup/doi/10.1093/fsr/owad021#supplementary-data
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degrading the DNA (DNA recovery down to ∼30% of input
DNA) [38, 82]. Moreover, loss in precision of the methylation
quantification is observed when the DNA input amount is
low, as a small percentage differences in methylation cannot
be quantified from a low number of cells [83]. Further, the
quantification of DNA methylation is also more impacted by
stochastic effects when the DNA input amount is low [83].

It has been proposed that a threshold of minimum 1 000
sequencing reads are required to retain accuracy in the pro-
vided methylation levels [84]. However, a high number of
reads cannot compensate for deviations caused by stochastic
effects due to low-input amounts of DNA [83]. Further-
more, studies have suggested that 10–20 ng of DNA template
is required for the PCR step (after bisulphite conversion)
to obtain a reliable methylation quantification [48, 83]. In
agreement with this, Woźniak et al. [76] observed robust
quantifications down to 20 ng DNA input (8.8–11.8 ng
DNA template after bisulphite conversion), while lower input
amounts resulted in increased variability in methylation levels
when evaluating the sensitivity of the DNA methylation assay.
Similarly, Ambroa-Conde et al. [85] observed significant devi-
ations in DNA methylation values when the DNA input was
1 ng and recommended a minimum of 10 ng of genomic DNA
for their assay. Developing good age-prediction models using
lower DNA inputs is one requirement for implementing age
estimations in forensic casework. Aliferi et al. [73] reported
a prediction model that relied on sites with strong correla-
tions between methylation levels and chronological age and
had an extensive methylation range over the human lifespan
(overall methylation range above 60%). Using this marker
selection strategy, the model could retain the accuracy of the
age-prediction down to an input of 5 ng of DNA (∼1 ng
input in the PCR). This input is much lower than any other
age-prediction model and close to the input levels used for
standard genotyping methods.

Forensically relevant tissues and body fluids

Analysis of DNA from whole blood or saliva samples is con-
venient when developing age-prediction models, since these
tissues are easily accessible. Therefore, most of the forensic age
estimation models are based on DNA methylation in blood
[18, 32, 41, 42, 47–49, 51, 52, 54, 56, 58, 59, 61–64, 66,
68, 71, 73, 74, 76, 78, 86–97]. Some studies have focused
on DNA from buccal swabs [40, 50, 57, 71, 76] and saliva
[51, 70, 71, 80, 98]. These body fluids are also relevant in a
forensic context, both for crime and immigration casework.
Other tissues and body fluids such as dental tissue [41, 65],
hair follicles [69], bones [76], and semen [53, 55, 72, 75, 88]
have been used to develop age-prediction models as well.

Samples used to develop age-prediction models are usu-
ally high-quality single-source tissue samples or body fluids,
while forensic casework samples are often low-quality traces
from cigarette butts, swabs with blood or seminal stains,
vaginal swabs, etc. Furthermore, the DNA is often partly
degraded, and samples often contain DNA from multiple
donors. For implementation into standard forensic casework,
age-prediction models must be assessed in the context of
the actual forensic samples. Moreover, the stability of the
DNA methylation over more extended periods needs to be
considered. Hamano and co-workers [98] tested their age-
prediction model for saliva on DNA extracted from seven
cigarette butts to simulate samples from an actual crime
scene. They observed a decrease in the prediction accuracy

when validating the model on the cigarettes compared to
validation in an independent dataset of 50 saliva samples
(MAD of 6.25 years compared to 7.65 years). Multiple models
developed for blood have been tested in bloodstains with
little or no difference in the prediction accuracy, regardless of
the time of storage, indicating the usefulness of blood-based
predictions for age estimation in bloodstains [42, 48, 54]. In
concordance, Han et al. [95] performed an age prediction
on DNA extracted from a bloodstain at a crime scene using
two prediction models developed for blood (ELOVL2, FHL2,
MIR29B2CHG, CCDC102B, KLF14, SYNE2, TRIM59, and
cg26947034). The predicted age was 38.27 and 38.59 years,
and after the case was solved, it was confirmed the suspect was
indeed 38 years old. Lee et al. [99] observed a slight decrease in
the accuracy of their age-prediction model for semen collected
from crime scenes compared to fresh semen samples (MAD of
5.2 years compared to 4.8 years). The authors explained the
decrease in accuracy as a likely influence of various factors
such as storage conditions, the presence of other body fluids,
and external contamination in the trance samples.

Most prediction models developed to date are tissue-
specific, meaning the source tissue of a trace sample must
be known or determined beforehand. Attempts to develop
DNA methylation-based forensic tissue identification models
have been carried out (for a detailed review, see Kader et al.
[100]), which open up for combining tissue identification and
age correlation CpGs into one model. This idea has been
implemented for models developed for buccal swabs. Buccal
swabs are highly heterogeneous and consist of a mixture
of buccal epithelial cells and leukocytes. Furthermore, the
composition of the mixture can vary considerably between
samples [101]. Eipel et al. [50] tried to overcome this problem
by introducing tissue-specific CpG sites for buccal epithelial
cells (using CD6 and SERPINB5) into their model. In
combination with the age-associated CpGs, they observed
age-predictions with MADs of 5.09 and 5.12 years in two
independent validation sets. Similarly, Hong et al. [70]
observed improved age-prediction when incorporating a
cell-type-specific CpG (PTPN7) into their saliva-based age-
prediction model (using KLF14, TSSK6, TBR1, CNGA3,
SLC12A5, and SST) suggesting that determination of the
cellar composition can improve age-predictions. Ambroa-
Conde et al. [85] developed an age prediction model for
both buccal swabs and saliva samples comprising seven
CpGs (cg10501210, LHFPL4, ELOVL2, PDE4C, HOXC4,
OTUD7A, and EDARADD). Opposed to the studies
mentioned above, the addition of the tissue of origin as a
variable did not significantly improve the age-predictions
(MAD of 3.84 years compared to 3.78 years).

The age-prediction models developed for blood seem to
have higher accuracy than those developed for other tissues.
This is partly because the age correlations of most of the
CpGs included in prediction models were originally found
in studies investigating blood samples. This suggests that the
best markers for accurate age-prediction are tissue specific.
However, studies have found consistent age-association of
CpGs among different tissue types. Naue et al. [102] investi-
gated the correlation of existing blood markers in brain, bone,
muscle, and buccal swabs. They identified seven CpG loci
showing age-correlated DNA methylation levels in all tissues.
Interestingly, it was not the same CpG positions in the loci
that were correlated with age in the different tissues. However,
as their study was a proof-of-concept study based on only
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29 samples, more samples of each tissue are needed to fully
investigate the tissue independency of the CpGs.

Few studies have tried to validate whether models devel-
oped for one tissue can be adapted to other tissues. Eipel
et al. [50] applied the blood-based 3-CpG-model initially
developed by Weidner et al. [32] to buccal swab samples and
observed an average overestimation of 14.6 years in their
samples. This effect seemed consistent rather than random.
Therefore, the model was re-trained on buccal swab samples,
and the result was a lower MAD of 4.3 years. In another
study, Woźniak et al. [76] developed a multiplex assay for age
prediction in blood, buccal cells, and bones. The assay com-
prised a multiplex of 44 CpG sites within eight age-associated
genes (ELOVL2, MIR29B2CHG, TRIM59, KLF14, FHL2,
EDARADD, PDE4C, and ASPA). Three prediction models
were developed consisting of five to six CpGs depending on
the tissue. All three models showed high prediction in the
respective tissue (MAD of 3.2 years in blood, 3.7 years in
buccal cells, and 3.4 years in bones). However, the models
were tissue-specific, and source tissue evaluations were needed
before choosing between tissue-specific models. Jung et al.
[71] proposed a multi-tissue (blood, saliva, and buccal swabs)
age-prediction assay with five CpG sites (ELOVL2, FHL2,
KLF14, MIR29B2C, and TRIM59). Separate age-prediction
models for the three sample types showed MADs of 3.48 years
in blood, 3.55 years in saliva, and 4.29 years in buccal swab
samples, while a combined-tissue model showed a MAD of
3.84 years when applied on an independent validation set
compromising all three tissue types. This prediction accuracy
was comparable to those found in tissue-specific models.

Population influence

Ancestry-related differences in age-associated DNA methyla-
tion patterns have yet to be investigated fully. Most studies
of forensic age estimation have focused on either European
or Asian populations (see Supplementary Table S1), and the
influence of biogeographical origin on DNA methylation
patterns has, with a few exceptions, rarely been examined.

The model proposed by Zbieć-Piekarska et al. [47] in
2015 comprised five CpGs located in the five loci ELOVL2,
MIR29B2CHG, TRIM59, KLF14, and FHL2 and was devel-
oped based on a Polish population. This model was later eval-
uated in Korean and Singaporean populations [52, 54]. Within
the five loci, a total of 32 CpG positions were re-analyzed
and re-trained to generate new models on the two Asian
populations. The new models compromised three CpGs for
the Singaporean individual (TRIM59, KLF1, and ELOVL2)
and 5–6 CpGs for the Korean individuals (KLF14, FHL2,
ELOVL2, TRIM59, and MIR29B2CHG). Hereafter, the pre-
diction accuracies of the original and new models were exam-
ined. For the Korean individuals, the original prediction model
worked well with similar prediction accuracy to Polish indi-
viduals (MAD of 4.18 years for Korean and 3.9 years for
Polish validation samples), while a somewhat higher pre-
diction error was observed in the Singaporean individuals
(MAD of 4.8 years). Regarding the new models, there was
an increase in the accuracy for the Korean individuals (MAD
of 3.34/3.29 years), while for the Singaporean individuals, the
accuracies of the new and old models were the same. Although
this might indicate that the five proposed loci are not be the
optimal markers in the Singaporean population, this approach
could not distinguish, if the differences observed were due to
technical differences between the laboratories.

Other studies have evaluated age-prediction models within
the same laboratory with the same set-up. Fleckhaus et al.
[103] analyzed the methylation at five CpG sites within
ASPA, ITGA2B, PDE4C, and ELOVL2 from two previously
reported age-prediction models in population groups from
the Middle East, West Africa, and Central Europe. An overall
high similarity in the change of methylation with age for the
investigated CpGs was observed, but statistically significantly
lower age-prediction errors were observed for the Middle
Eastern population compared to the Central European and
West African populations for both models.

Thong et al. [59] analyzed CpGs within ELOVL2, KLF14,
TRIM59, and FHL2 in Singapore-based populations of Chi-
nese, Malays, and Indians and established an age-prediction
model using all three subpopulations. No statistically signif-
icant difference in prediction error was observed among the
three subpopulations (P = 0.53). In the same study, the authors
used DNA methylation data from Polish and French individu-
als previously reported by other studies [47, 104]. Compared
to the Singaporean subpopulations, notable differences in the
prediction accuracy were observed for the Polish and French
individuals (P ≤ 0.003). However, these differences could be
due to technical variations between laboratories (DNA extrac-
tion, bisulphite conversion, etc.).

Influence by sex, lifestyle, and diseases

Despite being widely studied, contradicting results have
been reported on how gender affects age-associated DNA
methylation. Weidner et al. [32] and Zbiec-Piekarska et al.
[47] found slight differences in the age-prediction accuracy
between males and females. In both studies, the predicted
age was higher in males than in females, and the prediction
accuracies were higher for females. The sample size of both
studies was small, and the differences were not statistically
significant.

Most studies on age-prediction based on DNA methylation
have failed to detect any effect of sex on DNA methylation
[18, 41, 50, 64, 92, 93, 95]. The sensitivity towards sex
may vary depending on the CpG sites selected, which can
explain the contradicting results. Nevertheless, when building
age-prediction models, selecting CpGs that show comparable
methylation levels among the two sexes is important.

Exogenous factors, including disease status and lifestyle
factors (alcohol intake, smoking habits, etc.), have also been
shown to impact DNA methylation patterns [105, 106]. For
a detailed review, see Koop et al. [107]. Excessive alcohol
intake leads to premature ageing and is associated with an
increased risk of mortality [108, 109]. The impact of alcohol
consumption on age-associated DNA methylation is not
straightforward. Studies have shown a dose-dependent effect
of alcohol consumption on age-associated DNA methylation
levels. Low or high alcohol consumption levels resulted
in age acceleration, while intermediate levels of alcohol
consumption seemed to have a decelerating effect [110, 111].
Weidner et al. [32] found that high alcohol consumption was
associated with a slight overestimation of age and increased
the estimation error of the model (PDE4C, ASPA, ITGA2B).
Piniewska-Róg et al. [112] investigated the association
between high alcohol consumption and the precision of the
model proposed by Woźniak [76] (ELOVL2, MIR29B2CHG,
KLF14, FHL2, TRIM59, PDE4C, EDARADD, and ASPA).
The authors found that the mean predicted age of alcohol
abusers was higher (1.4 years) compared to controls of

https://academic.oup.com/fsr/article-lookup/doi/10.1093/fsr/owad021#supplementary-data
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the same age and sex, indicating slightly faster ageing in
alcohol abusers. This acceleration was mainly associated with
one CpG in MIR29B2CHG but did not affect the overall
prediction accuracy of the age model.

Tobacco smoking is a leading cause of disease and pre-
mature death [113, 114]. While some studies have found
an association between smoking and age acceleration [110,
115, 116], others have failed to detect any association [111].
As part of their model development, Hamano et al. [98]
investigated whether smoking affected methylation of age-
associated CpG sites and did not find statistically significant
differences among non-smokers, former, or current smokers.
Similarly, Eipel et al. [50] compared 22 smokers and 179 non-
smokers and found no differences in methylation levels for
their selection of CpG sites.

Diseases such as cancer, cardiovascular disease, and ageing-
related diseases have been shown to alter the relationship
between DNA methylation and age [117–120]. Spólnicka
et al. [121] analyzed methylation levels in five CpGs from five
of the most used genes in forensic age-prediction (ELOVL2,
MIR29B2CHG, KLF14, FHL2, and TRIM59) in three groups
of individuals with early or late-onset Alzheimer’s disease or
Graves’ disease. The CpGs in ELOVL2 and MIR29B2CHG
did not show disease-related alterations, indicating robustness
in their DNA methylation patterns. However, the CpGs in
TRIM59 showed hypermethylation in the group of early
onset Alzheimer’s disease as well as Graves’ disease patients
while the CpGs in FHL2 showed hypomethylation in the
latter. Similarly, Aliferi et al. [73] investigated the impact of
schizophrenia, rheumatoid arthritis, frontal temporal demen-
tia, and progressive supranuclear palsy on the methylation of
the 11 CpGs included in their age-prediction mode. Still, they
did not find differences in methylation in diseased individuals.
Notably, two of the CpGs in their model came from the
same loci (FHL2 and TRIM59), as reported by Spólnicka
et al. [121]. They found hypermethylation and decreased
prediction accuracy for TRIM59 in early-onset Alzheimer’s
disease patients. While altered DNA methylation leading to
decreased prediction accuracy was found for both TRIM59
and FHL2 in the group of Graves’ disease, indicating differ-
ences in how various diseases affect the methylation of age-
correlated CpGs.

More research into the robustness of age-associated CpGs
is needed to fully understand the impact of exogenous and
endogenous factors on DNA methylation-based age estima-
tion for implementation in forensic casework.

Importance of validation

Intra-laboratory validation

Once developed, an age-prediction model needs to be vali-
dated. Without proper validation, it is impossible to ascertain
how well the model performs on data not used to build the
model (unseen data). Model validation also helps identify
issues such as overfitting, e.g. when a model contains too
many variables. This results in a close fit to the data on which
the model was built (training data) but poor performance on
other data. Usually, the validation is carried out by testing the
model’s prediction accuracy on a separate dataset (validation
set). The reported error of the model can depend greatly on
how the validation dataset was selected. Ideally, the validation
dataset should be done on an external dataset. However, the

validation dataset most often derives from randomly divid-
ing the data into a training and a validation dataset. Most
proposed forensic age-prediction models have been validated
using this approach, and one of the risks is an overestimation
of the performance [122]. Another commonly used valida-
tion method is cross-validation, where the original sample is
randomly split into k equal-sized subsamples. One subsample
serves as the training data, while the remaining samples serve
as the validation data. This procedure is repeated k times
until all subjects have been used to validate the model. The
performance of the model is then presented as the average
performance of the k repeats. Compared to the data-splitting
approach, cross-validation may use a large part of the data
to develop the model, which decreases the risk of overfitting
[123].

Another consideration is the approach for statistical
modelling. Most of the CpGs in current forensic age-
prediction models were included based on a high correlation
between their methylation levels and chronological age,
usually observed as high Pearson or Spearman correlations.
When using linear regression models, several assumptions
are made, including homoscedasticity, which assumes equal
variance in the age groups. Age-prediction models have
struggled with fulfilling this criterion as the data have shown
a non-constant error variance with age [47–49]. In practical
terms, this is expressed as an increase in prediction errors with
increased age. The decrease in the accuracy of linear regression
models is also caused by the non-linear associations between
age and methylation of some CpG sites. This is especially clear
for CpGs in the gene ELOVL2, one of the most excessively
used age-informative genes [41, 76, 86]. This raises doubt
about linear models and whether they can capture all aspects
of the complicated relationship between DNA methylation
and age. Several approaches to account for non-linear patterns
have been proposed, including power transformation before
multivariate linear regression analysis and multiple quadratic
regression [41, 76].

To better capture the complexity of DNA methylation with
age, several machine-learning approaches have been used for
model development [66, 73, 78, 80, 86, 87, 124]. Aliferi
et al. [87] compared 17 statistical modelling approaches on
the same set of 12 CpGs to select the optimal approach.
Their findings suggested support vector machines as the most
robust and accurate method. However, more research on
larger datasets is needed to evaluate the performance of the
different modelling approaches.

Inter-laboratory validation

Inter-laboratory validations are essential for the universal
implementation of age-prediction methods and models. Sev-
eral recent studies have focused on validating published age-
prediction models in other laboratories and with different
setups. Pfeifer et al. [125] evaluated the performance of two
previously published age-prediction models for blood and
buccal swabs in independent validation sets. Both models
were proposed by Bekaert et al. [40, 41] in two separate
studies and were based on CpG sites in ASPA, EDARADD,
PDE4C, and ELOVL2. Using the prediction models, they
observed high prediction errors in two tissues (MADs of 9.84
and 8.32 years for blood and buccal swabs, respectively),
which was much higher than the original study (MAD of
3.74 and 3.32 years, respectively). However, the experimental
conditions, including input DNA, PCR methods, bisulphite
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kit, and analysis were different between the two studies, which
the authors supposed could explain the differences observed.
Nonetheless, inter-population viability can also play a role
in the results observed. By re-training the prediction models
on their data, Pfeifer et al. [125] statistically significantly
increased the accuracy (MAD of 5.55 years and 4.65 years
for blood and buccal swabs).

In another study, Daunay et al. [104] evaluated the perfor-
mance of six age-prediction models using DNA methylation
analysis by pyrosequencing and blood samples from 100
French individuals. The models included a single-locus model
[48] and five multi-locus models [32, 41, 47, 49, 54]. The best
performance was found for two of the multi-locus models
(MAD of 4.5 years for Bekaert et al. [41] and 5.2 years for
Thong et al. [54]). The observed MADs were much higher
than the ones described in the original studies. The authors
attributed the decrease in accuracy to variations during the
implementation of the different pyrosequencing assays.

To truly test for inter-laboratory variability, the same sam-
ples must be evaluated in different laboratories to minimize
variations. In line with this, five participating laboratories
of the VISible Attributes through GEnomics (VISAGE)
consortium validated a DNA methylation assay for semen
[126]. The assay consisted of 13 CpG sites. The reproducible
quantification of methylation levels and sensitivity using
DNA methylation controls was tested. Furthermore, to
evaluate the concordance between laboratories and mimic
casework scenarios, DNA extracts and stains on FTA cards
from two semen samples were also investigated. These
samples showed robust methylation quantification in all
laboratories. After validating the assay, a more streamlined
assay combining only five of the loci in one multiplex
(SH2B2, EXOC3, CALR2, IFITM2, and NOX4) was
developed along with a model compromising sex CpGs from
the five loci.

Future perspectives and concluding remarks

It is evident from the number of recent studies that age estima-
tion has gained much attention in the forensic field. Although
DNA methylation-based forensic age-prediction seems to be
the most promising method, one of the major drawbacks
is the need for high DNA input amounts. Therefore, the
field has recently focused on developing models that require
less DNA input or applying methods that avoid bisulphite
conversion. A bisulphite-free method for quantification of
DNA methylation at base-level-resolution has been proposed
[127]. This method combines two steps for converting 5mC
and 5-hydroxymethylcytosine (5hmC) to dihydrouracil. Dihy-
drouracil is then converted to thymine during PCR amplifi-
cation, enabling the methylation status to be interpreted as
a C/T SNP. Compared to bisulphite conversion, this method
is non-destructive and leaves more DNA molecules intact for
the subsequent PCR step. Furthermore, this technique con-
verts methylated cytosines into thymines. This is in contrast
to bisulphite conversion assays that convert unmethylated
cytosines to thymines. Most cytosines in the genome are
unmethylated. Thus, by converting the methylated cytosines
instead of unmethylated cytosines, the complexity of the DNA
sequence is preserved, which improves mapping rates dur-
ing sequence analysis. However, the stochastic effects occur-
ring when the DNA input becomes low still apply to this
method.

Studies have shown that tissue-specific age-prediction mod-
els allow for more accurate predictions than multi-tissue
models. However, tissue-specific age-prediction models can
only be used if the type of tissue is known. Considerations
should be made as to whether it is more practical to use a
less accurate age-prediction model that can be applied to all
tissues or more accurate models for each tissue type.

Recently, a male-specific Y-chromosome-based age-
prediction model was proposed [128]. The model could be
useful for age determination of unknown male perpetrators
in mixed male–female DNA samples, which are commonly
obtained from physical or sexual assault cases. In the proof-of-
principle study by Vidaki et al. [128], the authors investigated
DNA methylation patterns of the Y-chromosome in blood
samples. In addition to blood, semen is important for male-
specific age-prediction in sexual assault cases. At the moment,
age-prediction models for semen consist of CpGs located
on the autosome and, thus, cannot be used if the semen is
mixed with body fluid from the female donor in a sexual
assault case. Research into the correlation between age and
methylation of Y-chromosome CpGs in semen is therefore
needed.

Ideally, an age-prediction model developed for forensic
use should have a broad application and should not be
influenced by the biogeographical origin of the donor of
the biological tissue. While many of the same CpG sites are
included in various prediction models, much work is still
needed to understand the relationship between ancestry, DNA
methylation patterns, and age-prediction. One solution could
be to develop ancestry-specific prediction models. However,
for forensic applications, this would require several models
for all relevant populations and the additional determination
of the ancestry of the donor before applying a model. To
overcome this issue, Fleckhaus et al. [103] proposed to include
ancestry-informative markers in the age-estimation models.
Another solution could be the identification of CpGs with
a neutral relationship to biogeographical origin. In this way,
the models could be applied to casework without knowing
the ancestry of the doner beforehand. A high level of within-
population variability in DNA methylation has previously
been shown [129]. Thus, a large number of samples are
needed to identify ancestry-neutral CpGs, which has not
been the case for the sample sizes of the studies carried
out so far.

At the time of writing, the validation study by the VISAGE
consortium is the first study of its kind [126]. Such inter-
laboratory validation studies are essential to fully evaluate
the technical variability in detecting DNA methylation levels
and ensuring the selection of models that perform consis-
tently. Further inter-laboratory exercises and collaborative
initiatives, including a broader number of participants, are
needed to fully address the issue of technical variability for
each potential age-prediction model. This would also help to
standardize protocols and methods before the implementation
into forensic casework.
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